
'W'_'..'.'"' .,ATION PAGE _ _M_

AD-A226 801 -P
Final 13 Feb. 1990 to 13 Feb. 1991

4.TJLEANDSLIMS Ada Compiler Validation Summary Report:TLD System, SRW6dF"NUWERS

td., TLD VAX/MIL-STD-1750A Ada Compiler System, Version 1.4.0,
MicroVAX II (Host) to Tektronix 8540/PACE MIL-STD-1750A Emulator

(Target), 900123W1.10244

LAUORHS)

Wright-Patterson AFB, Dayton, OH
USA

7. PER"O ORGANIAM NU(U) ADADOOSS(ES) - & PEFFOFWI OAGANATION

Ada Validation'Facility, Language Control Facility ASD/SCEL
Bldg. 676, Rm 135
Wrighb-Patterson AFB AVF-VSR-354.0790

Dayton, OH 45433

9. SPOOrMMUDnR. AGENCY NAM(S) A ADDRESS(ES) 10. SP04SORMAOMRNG AGENCY

Ada Joint Program Office IEPOT.NLIWIBER

United SLates Department of Defense
Washington, D.C. 20301-3081

I. 00WLMENTARY NOTES

12L DTRLTIOMiAVALAS UY SrTEMENT 12b. DBTRSJIIN CODE

Approved for public release; distribution unlimited.

TLD Systems, Ltd., TLD VAX/MIL-STD-1750A Ada Compiler System, Version 1.4.0, Wright-Pat-

terson AFB, MicroVAX II under VAX/VMS, Version 5.1 (Host) to Tektronix 8540/PACE MIL-STD-

1750A Emulator-under TLDspk Single Program Kernel, Version 1.4.0 (Target), ACVC 1.10.

.0 LSEP 25 Ili9O

14.0IACTTEMS Ada programming language, Ada Compiler Validation 5.l.lER O

Summary Report, Ada Compiler Validation Capability, Validation

Testing, Ada Validation Office, Ada Validation Facility, ANSI/MIL- -s. PVCECOE

ATD-1815A, Ada Joint Program Office

OF THI PAGEOPAUTPACTUNCLASSIFIEDBA6"
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

90 0 24 O 0--
-- UMI)

AVF Control Number: AVF-VSR-354.0790
89-09-21-TLD

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 900213W1.10244
TLD Systems, Ltd.

TLD VAX/MIL-STD-1750A Ada Compiler System, Version 1.4.0
MicroVAX II Host and Tektronix 8540,'PACE MIL-STD-1750A Emulator Target

Completion of On-Site Testing:
13 February 1990

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

Ada Compiler Validation Summary Report:

Compiler Name: TLD VAX/MIL-STD-1750A Ada Compiler System, Version 1.4.0

Certificate Number: 90i'!Z

Host: MicroVAX II under
VAX/VMS, Version 5.1

Target: Tektronix 8540/PACE MIL-STD-1750A Emulator under
TLDspk Single Program Kernel, Version 1.4.0

Testing Completed 13 February 1990 Using ACVC 1.10

Customer Agreement Number: 89-09-21-TLD

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Ada Valdati-on Organization i 1.0
(Director, Computer & Software Engineering Division

Institute for Defense Analyses
Alexandria VA 22311

A oint Pr grim Office D:st
Dr. John Solomond
Director
Department of Defense
Washington DC 20301

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS. . 3-5
3.7 ADDITIONAL TESTING INFORMATION3-6
3.7.1 Prevalidation 3-6
3.7.2 Test Method3-6
3.7.3 Test Site3-7

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

APPENDIX E COMPILER OPTIONS AS SUPPLIED BY TLD SYSTEMS, LTD.

CHAPTER 1

INTRODUCTION

This Validation Summary Report -tVSR describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results oA-*e&Zng this compiler using the Ada Compiler
Validation Capability 4'(A j An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.',

2

C Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report. -

K The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results.\ The purpose of validating is to ensure conformity
of the compiler to the da Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation-dependent but is permitted by the Ada Standard. Six classes
of tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1-1

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

" To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 13 February 1990 at Torrance CA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C.552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Lanuage,
IT7ST D-T_ 5X-February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures, Version 2.0, Ada Joint Program
Olice, May 1989.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., 7ecmer 19

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada-Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
main'aining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

1-3

INTRODUCTION

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors because of
the way in which a program library is used at link time.

Class A tests ensure the successful compilation of legal Ada programs with
certain language constructs which cannot be verified at compile time.
There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

1-4

INTRODUCTION

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the'compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK FILE, support
the. self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be

1-5

INTRODUCTION

customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: TLD VAX/MIL-STD-1750A Ada Compiler System, Version 1.4.0

ACVC Version: 1.10

Certificate Number: 900213V1.10244

Host Computer:

Machine: MicroVAX II

Operating System: VAX/VMS
Version 5.1

Memory Size: 16 Megabytes

Target Computer:

Machine: Tektronix 8540/PACE
MIL-STD-1750A Emulator

Operating System: TLDspk Single Program Kernel
Version 1.4.0

Memory Size: 64 Kilobytes

Communications Network: Ethernet - 802

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55A03A..H (8
tests).)

(3) The compiler correctly processes tts~s containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to six
levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types
LONG INTEGER and LONG FLOAT in package STANDARD. (See tests
B860UlT..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

(1) Some of the default initialization expressions for record
components are evaluated before any value is checked for
membership in a component's subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with less precision
than the base type. (See test C35712B.)

2-2

CONFIGURATION INFORMATION

(3) This implementation uses no extra bits for extra precision and
uses all extra bits for extra range. (See test C35903A.)

(4) Sometimes NUMERIC ERROR is raised when an integer literal
operand in a comparison or membership test is outside the
range of the base type. (See test C45232A.)

(5) No exception is raised when a literal operand in a fixed-point
comparison or membership test is outside the range of the base
type. (See test C45252A.)

(6) Underflov is gradual. (See tests C45524A..Z (26 tests).)

d. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

(1) The method used for rounding to integer is round away from
zero. (See tests C46012A..Z (26 tests).)

(2) The method used for rounding to longest integer is round away
from zero. (See tests C46012A..Z (26 tests).)

(3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test C4AO14A.)

e. Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.IITEGER'LAST and/or SYSTEM.MAXINT.

For this implementation:

(1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAX INT components raises NUMERICERROR sometimes.
(See test C3600"A.)

(2) CONSTRAINT ERROR is raised when 'LENGTH is applied to an array
type with INTEGER'LAST + 2 components with each component
being a null array. (See test C36102A.)

(3) CONSTRAINT ERROR is raised when 'LENGTH is applied to an array
type with SYSTEM.MAX INT + 2 components with each component
being a null array. (See test C36202B.)

2-3

CONFIGURATION INFORMATION

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises CONSTRAINT ERROR when the array objects are declared.
(See test C52103X.)

(5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises CONSTRAINT ERROR when the array
objects are declared. (See test C52104Y.J

(6) A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises no exception. (See test E52103Y.)

(7) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

(8) In assigning two-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

f. Discriminated types.

(1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

g. Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, index
subtype checks are made as choices are evaluated. (See tests
C43207A and C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised before all choices are evaluated
when a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test E43211B.)

2-4

CONFIGURATION INFORMATION

h. Pragmas.

(1) The pragma INLINE is not supported for functions or
procedures. (See tests LA3004A..B (2 tests), EA3004C..D (2
tests), and CA3004E..F (2 tests).)

i. Generics.

(1) Generic specifications and bodies can be compiled in separate
compilations. (See tests CA1012A, CA2009C, CA2009F, BC3204C,
and BC3205D.)

(2) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

j. Input and output.

(1) The package SEQUENTIAL IO can be instantiated with
unconstrained array types-and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

(2) The package DIRECT 10 can be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101H, EE2401D,and EE2401G.)

(3) The Director, AJPO, has determined (AI-00332) that every call
to OPEN and CREATE must raise USE ERROR or NAME ERROR if file
input/output is not supported. This implementation exhibits
this behavior for SEQUENTIAL IO, DIRECT IO, and TEXT IO.

2-5

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 799 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 285
executable tests that use floating-point precision exceeding that supported
by the implementation and 242 executable tests that use file operations not
supported by the implementation. Modifications to the code, processing, or
grading for 8 tests were required to successfully demonstrate the test
objective.

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
.A B C D E L

Passed 126 1131 1548 15 10 44 2874

Inapplicable 3 7 767 2 18 2 799

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 192 544 496 245 170 99 157 332 131 36 252 144 76 2874

Inappl 20 105 184 3 2 0 9 0 6 0 0 225 245 799

Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time of
this validation:

E28005C A39005G B97102E C97116A BC3009B CD2A62D
CD2A63A CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B
CD2A66C CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D
CD2A76A CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G
CD2A84M CD2A84N CD2B15C CD2D11B CD5007B CD50110
ED7004B ED7005C ED7005D ED7006C ED7006D CD7105A
CD7203B CD7204B CD7205C CD7205D CE2107I CE3111C
CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 799 tests were inapplicable for the
reasons indicated:

a. The following 28. tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C24113F..Y (20 tests) C35705F..Y (20 tests)
C35706F..Y (20 tests) C35707F..Y (20 tests)
C35708F..Y (20 tests) C35802F..Z (21 tests)

3-2

TEST INFORMATION

C45241F..Y (20 tests) C45321F..Y (20 tests)
C45421F..Y (20 tests) C45521F. .Z (21 tests)
C45524F..Z (21 tests) C45621F..Z (21 tests)
C45641F..Y (20 tests) C46012F..Z (21 tests)

b. C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORTFLOAT.

c. The following 186 tests are not applicable because this
implementation does not support 'SMALL clauses, 'STORAGE SIZE
clauses for access types, or 'SIZE length clauses for other-than
task types:

A39005B..C (2) A39005E C87B62A..C (3) CD1009A..J (10)
CD1009L CDl0090..S (5) CDIC03A CD1C03C
CDlC03F CD1C04A CDIC04C CD2A21A..E (5)
CD2A22A..J (10) CD2A23A..E (5) CD2A24A..J (10) ED2A26A
CD2A31A..D (4) CD2A32A..J (10) CD2A41A..E (5) CD2A42A..J (10)
CD2A51A..E (5) CD2A52A..D (4) CD2A52G..J (4) CD2A53A..E (5)
CD2A54A..D (4) CD2A54G..J (4) ED2A56A CD2A61A..L (12)
CD2A62A..C (3) CD2A64A..D (4) CD2A65A..D (4) CD2A71A..D (4)
CD2A72A..D (4) CD2A74A..D (4) CD2A75A..D (4) CD2A81A..F (6)
CD2A83A..C (3) CD2A83E..F (2) CD2A84B..I (8) CD2A84K..L (2)
ED2A86A CD2A87A CD2B1lB..G (6) CD2B15B
CD2BI6A CD2D11A CD2D13A

d. The following 16 tests are not applicable because this
implementation does not support a predefined type SHORT INTEGER:

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55B07B B55BO9D B86001V
CD7101E

e. C45231D, B86001X, and CD7101G are not applicable because this
implementation does not support any predefined integer type with a
name other than INTEGER, LONG-INTEGER, or SHORT-INTEGER.

f. C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because the value of SYSTEM.MAX MANTISSA is less than 48.

g. D64005F and D64005G are not applicable because this implementation
does not support nesting 10 levels of recursive procedure calls.

h. C86001F is not applicable because, for this implementation, the
package TEXT 10 is dependent upon package SYSTEM. This test
recompiles pickage SYSTEM, making package TEXTI0, and hence
package REPORT, obsolete.

i. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

3-3

TEST INFORMATION

j. B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONGFLOAT, or SHORT-FLOAT.

k. LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F are not
applicable because this implementation does not support pragma
INLINE.

1. The following 14 tests are not applicable because this
implementation does not support record representation clauses:

CD1009N CD1009X..Z (3) CDlC03H CDlC04E
ED1DO4A CD4031A CD4041A CD4051A..D (4)
CD7204C

m. The following 29 tests are not applicable because this
implementation does not support address clauses for constants:

CD5O11B CD5O11D CD5O11F CD5O11H CD501L
CD5O11N CD5O11R CD5012C CD5012D CD5O12G
CD5012H CD5O12L CD5013B CD5013D CD5013F
CD5013H CD5O13L CD5013N CD5013R CD5014B
CD5O14D CD5O14F CD5014H CD5O14J CD5O14L
CD5O14N CD5014R CD5O14U CD5014W

n. The following 242 tests are inapplicable because sequential, text,
and direct access files are not supported:

CE2102A..C (3 tests) CE2102G..H (2 tests)
CE2102K CE2102N..Y (12 tests)
CE2103C..D (2 tests) CE2104A..D (4 tests)
CE2105A..B (2 tests) CE2106A..B (2 tests)
CE2107A..H (8 tests) CE2107L
CE2108A..B (2 tests) CE2108C..H (6 tests)
CE2109A..C (3 tests) CE2110A..D (4 tests)
CE2111A..I (9 tests) CE2115A..B (2 tests)
CE2201A..C (3 tests) CE2201F..N (9 tests)
CE2204A..D (4 tests) CE2205A
CE2208B CE2401A..C (3 tests)
CE2401E..F (2 tests) CE2401H..L (5 tests)
CE2404A..B (2 tests) CE2405B
CE2406A CE2407A..B (2 tests)
CE2408A..B (2 tests) CE2409A..B (2 tests)
CE2410A..B (2 tests) CE2411A
CE3102A..B (2 tests) EE3102C
CE3102F..H (3 tests) CE3102J..K (2 tests)
CE3103A CE3104A..C (3 tests)
CE3107B CE3108A..B (2 tests)
CE3109A CE3110A
CE3111A..B (2 tests) CE3111D..E (2 tests)
CE3112A..D (4 tests) CE3114A..B (2 tests)

3-4

TEST INFORMATION

CE3115A EE3203A
CE3208A EE3301B
CE3302A CE3305A
CE3402A EE3402B
CE3402C..D (2 tests) CE3403A..C (3 tests)
CE3403E..F (2 tests) CE3404B..D (3 tests)
CE3405A EE3405B
CE3405C..D (2 tests) CE3406A..D (4 tests)
CE3407A..C (3 tests) CE3408A..C (3 tests)
CE3409A CE3409C..E (3 tests)
EE3409F CE3410A
CE3410C..E (3 tests) EE341OF
CE3411A CE3411C
CE3412A EE3412C
CE3413A CE3413C
CE3602A..D (4 tests) CE3603A
CE3604A..B (2 tests) CE3605A..E (5 tests)
CE3606A..B (2 tests) CE3704A..F (6 tests)
CE3704M..O (3 tests) CE3706D
CE3706F..G (2 tests) CE3804A..P (16 tests)
CE3805A..B (2 tests) CE3806A..B (2 tests)
CE3806D..E (2 tests) CE3806G..H (2 tests)
CE3905A..C (3 tests) CE3905L
CE3906A..C (3 tests) CE3906E..F (2 tests)

EE2201D..E (2 tests) EE2401D EE2401G

o. The tests CE2103A, CE2103B, and CE3107A do not allow the
implementation to raise USE ERROR for external file CREATE and
OPEN operations when these -operations are not supported by the
implementation. An unhandled USE ERROR exception was raised by
these tests.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 8 tests.

3-5

TEST INFORMATION

The following tests were split because syntax errors at one point resulted
in the compiler not detecting other errors in the test:

B24009A B44004D B49003A B49005A B49009C B59001E

Test AD7006A was modified because the Type SYSTEM.MEMORY SIZE needed to be
explicitly converted to type INTEGER. The modification was made so that
line 23 was changed to:

I :- INTEGER (SYSTEM.MEMORY SIZE - MYMSIZE + 1);

At the recommendation of the AVO, the expression "2**T'MANTISSA - 1" on
line 262 of test CC1223A was changed to "(2**(T'MANTISSA-I)-l +
2**(T'MANTISSA-1))" since the previous expression causes an unexpected
exception to be raised.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by the TLD VAX/MIL-STD-1750A Ada Compiler System, Version 1.4.0 compiler
was submitted to the AVP by the applicant for review. Analysis of these
results demonstrated that the compiler successfully passed all applicable
tests, and the compiler exhibited the expected behavior on all inapplicable
tests.

3.7.2 Test Method

Testing of the TLD VAX/MIL-STD-1750A Ada Compiler System, Version 1.4.0
compiler using ACVC Version 1.10 was conducted on-siteby a validation team
from the AVF. The configuration in which the testing was performed is
described by the following designations of hardware and software
components:

Host computer: MicroVAX II
Host operating system: VAX/VMS, Version 5.1
Target computer: Tektronix 8540/PACE

MIL-STD-1750A Emulator
Target operating system: TLDspk Single Program Kernel,

Version 1.4.0
Compiler: TLD VAX/MIL-STD-1750A Ada Compiler

System, Version 1.4.0

3-6

TEST INFORMATION

The host and target computers were linked via Ethernet - 802.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer.

After the test files were loaded to disk, the full set of tests was
compiled and linked on the MicroVAX II; then all executable images were
transferred to the Tektronix 8540/PACE MIL-STD-1750A Emulator via Ethernet
- 802 and run. Results were printed from the host computer.

The compiler was tested using command scripts provided by TLD Systems, Ltd.
and reviewed by the validation team. The compiler was tested using the
following option settings:

No Exception Info Suppress generation of Debug string's
in relocatable object code for unhandled
exception

NoPhase Suppress displaying of phase times during
compilation

Tests were compiled, linked, and executed (as appropriate) using a single
host and target computer. Test output, compilation listings, and job logs
were captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at Torrance CA and was completed on 13 February 1990.

3-7

TEST INFORMATION

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 8 tests.

The following tests were split because syntax errors at one point resulted
in the compile- not detecting other errors in the test:

B24009A B44004D B49003A B49005A B49009C B59001E

Test AD7006A was modified because the Type SYSTEM.MEMORY SIZE needed to be
explicitly converted to type INTEGER. The modification was made so that
line 23 was changed to:

I :- INTEGER (SYSTEM.MEMORYSIZE - MYMSIZE + 1);

At the recommendation of the AVO, the expression "2**T'MANTISSA - 1" on
line 262 of test CC1223A was changed to "(2**(T'MANTISSA-1)-I +
2**(T'MANTISSA-1))" since the previous expression causes an unexpected
exception to be raised.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by the TLD VAX/MIL-STD-1750A Ada Compiler System, Version 1.4.0 compiler
was submitted to the AVF by the applicant for review. Analysis of these
results demonstrated that the compiler successfully passed all applicable
tests, and the compiler exhibited the expected behavior o.i all inapplicable
tests.

3-6

TEST INFORMATION

3.7.2 Test Method

Testing of the TLD VAX/MIL-STD-1750A Ada Compiler System, Version 1.4.0
compiler using ACVC Version 1.10 was conducted on-site by a validation team
from the AVF. The configuration in which the testing was performed is
described by the following designations of hardware and software
components:

Host computer: MicroVAX II
Host operating system: VAX/VMS, Version 5.1
Target computer: Tektronix 8540/PACE

MIL-STD-1750A Emulator
Target operating system: TLDspk Single Program Kernel,

Version 1.4.0
Compiler: TLD VAX/MIL-STD-1750A Ada Compiler

System, Version 1.4.0

The host and target computers were linked via Ethernet - 802.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer.

After the test files were loaded to disk, the full set of tests was
compiled and linked on the MicroVAX II; then all executable images were
transferred to the Tektronix 8540/PACE MIL-STD-1750A Emulator via Ethernet
- 802 and run. Results were printed from the host computer.

The compiler was tested using command scripts provided by TLD Systems, Ltd.
and reviewed by the validation team. The compiler was tested using the
following option settings:

No-Exception Info Suppress generation of Debug string's
in relocatable object code for unhandled
exception

NoPhase Suppress displaying of phase times during
compilation

3-7

TEST INFORMATION

Tests were compiled, linked, and executed (as appropriate) using a single
host and target computer. Test output, compilation listings, and job logs
were captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at Torrance CA and was completed on 13 February 1990.

3-8

APPENDIX A

DECLARATION OF CONFORMANCE

TLD Systems, Ltd. has submitted the following
Declaration of Conformance concerning the TLD
VAX/MIL-STD-1750A Ada Compiler System, Version 1.4.0
compiler.

A-1

DECLARATION OF CONFORMANCE

Compiler Implementor: TLD Systems, Ltd.
Ada Validation Facility: ASD/SCOL, Wright-Patterson AFB, OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: TLD VAX/MIL-STD-1750A Ada Compiler System, Version 1.4.0

Host Architecture ISA: MicroVAX II
OS&VER #: VAX/VMS Version 5.1

Target Architecture ISA: Tektronix 8540/PACE MIL-STD-1750A Emulator
OS&VER #: TLDspk Single Program Kernel, Version 1.4.0

Implementor's Declaration

I, the undersigned, representing TLD Systems, Ltd., have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A in the
compiler listed in this declaration operating in the default mode. I declare
that TLD Systems, Ltd. is the owner of record of the Ada language compiler
listed above and, as such, is responsible for maintaining said compiler in
conformance to ANSI/MIL-STD-1815A. All certificates and registrations for
the Ada language compiler listed in this declaration shall be made only in
the owne corporate name.

/ Date: 29 January 1990
Systems, Ltd.

Terry L. Dunbar, President

Owner's Declaration

I, the undersigned, representing TLD Systems, Ltd., take full responsibility
for implementation and maintenance of the Ada compiler listed above, and
agree to the oubiic disclosure of the final Validation Summary Report. I
further agree to continue to comply with the Ada trademark policy, as defined
by the Ada Joint Program Office. I declare that all of the Ada language
compilers listed, and their host/target performance are in compliance with
the Ada Lan &e Standard ANSI/MIL-STD-1815A.

____________________Date: 29 January 1990
TLEKSystems Ltd. -

Terry L. Dunbar, President

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the TLD VAX/MIL-STD-1750A Ada Compiler System, Version
1.4.0 compiler, as described in this Appendix, are provided by TLD Systems,
Ltd. Unless specifically noted otherwise, references in this Appendix are
to compiler documentation and not to this report. Implementation-specific
portions of the package STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -32768 .. 32767;
type LONG INTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 6 range -1.0*2.0**127 .. 0.999999*2.0**127;
type LONG FLOAT is digits 9 range -1.0*2.0**127 .. 0.999999999*2.0**127;

type DURATION is delta.2.0**(-14) range -86400.0 .. 86400.0;

end STANDARD;

B-1

The Ada language definition allows for certain machinedependencies in a
controlled manner. No machine-dependent syntax or semantic extensions or
restrictions are allowed. The only allowed implementation-dependencies
correspond to implementaton-dependent pragmas and attributes, certain
machine-dependent conventions as mentioned in chapter 13, and certain allowed
restrictions on representation clauses.

The full definition of the implementation-dependent characteristics of the
TLD VAX/MIL-STD-1750A Ada Compiler System is presented in this Appendix F.

Implementation- Dependent Pragmas

The TLD ACS supports the following implementation dependent pragmas.

Pragma Collect (type name, attribute);

This pragma tells the compiler to collect all objects of specified type name
and subtypes of type name into unmapped control sections. An "unmapped
control section" is allocated a physical memory location not covered by a
page register. Unmapped control sections are accessed from a device by DMA
or by IBM GVSC extended instructions.

Pragma Control-Section (USECT, UNMA.PPED,object-name{,object.name...));

This pragma specifies data objects that will be put into unmapped control
sections. The first two parameters must be USECT and UNMAPPED and the
remaining parameters are the names of Ada objects. An "unmapped control
section" is allocated a physical memory location not covered by a page
register. Unmapped control sections are accessed from a device by DMA or by
IBM GVSC extended instructions.

Pragma Export (Language-name, Ada entityname, (String));

This pragma is a complement to Pragma Interface and instructs the compiler to
make the entity named available for reference by a foreign language module.
The language name identifies the language in which the foreign module is
coded. The only foreign language presently supported is Assembly. Ada and
JOVIAL are permitted and presently mean the same as Assembly but the
semantics of their use are subject to redefinition by future releases of the
compiler. If the optional third parameter is present, the string provides
the name by which the entity may be referenced by the foreign module. The
contents of this string must conform to the conventions for the indicated
foreign language and the linker being used. No check is made by the compiler
to insure that these conventions are obeyed.

Only objects having static allocation and subprograms are supported by pragma
Export. If the Ada entity named is a subprogram, this pragma must be placed

B-2

within the declarative region of the named subprogram. If the name is that
of an object, the pragma must be placed within the same declarative region
and following the object declaration. It is the responsibility of the
programmer to insure that the subprogram and object are elaborated before the
reference is made.

pragma If (CompileTimeExpression);
pragma Elsif (CompileTimeExpression);
pragma Else;
pragma Endif;

These source directives may be used to enclose conditionally compiled source
to enhance program portability and configuration adaptation. These
directives may occur at tha place that language defined pragmas, statements,
or declarations may occur. Source code following these pragmas will be
compiled or ignored similar to the semantics of the corresponding Ada
statements depending upon whether the Compile Time Expression is true or
false. respectively. The primary difference between these pragmas and the
corresponding Ada statements are that the pragmas may enclose declarations
and other pragmas.

Pragma Interrupt Kind (Entry Name, Entry Type(, Duration));

This pragma must appear in the task specification and must appear after the
EntryName is declared. Allowed EntryTypes are Ordinary, Timed, and
Conditional. The optional parameter Duration is applicable only to timed
entries and is the time to wait for an accept.

For an Ordinary entry, if the accept is not ready, the task is queued.

For a Timed entry, if the accept is not ready, the program waits for the
period of time specified by the Duration. If the accept does not become
ready in that period, the interrupt is ignored.

For a Conditional entry, if the accept is not ready, the interrupt is
ignored.

Pragma Monitor;

Pragma Monitor can eliminate tasking context overhead. The pragma identifies
Ada tasks that obey certain restrictions (listed below), allowing efficient
invocaton by the compiler. With Pragma Monitor, a simple procedure call is
used to invoke task entry.

The pragma only applies to tasks that have the following restrictions:

o Monitor tasks must only be declared in library level non-generic packages.

B-3

o Monitor tasks may contain data declarations only within the accept
statement.

o A monitor task consists of an infinite loop containing one select
statement.

o The "when condition" is not allowed in the select alternative of the
select statement.

o The only selective wait alternative allowed in the select statement is the
accept alternative.

o All executable statements of a monitor task must occur within an accept
statement.

o Only one accept statement is allowed for each entry declared in the task
specification.

If a task body violates restrictions placed on monitor tasks, it is
identified as erroneous and the compilation fails.

pragma No_Default Initialization;
pragma No Default Initialization (typename, (,typename ...));

The LRM requires initialization of certain data structures even though no
explicit initialization is coded. For example, the LRM requires access_type
objects to have an initial value of "NULL." The NoDefaultInitialization
pragma would prevent this default initialization.

In addition, initialization declared in a type statement is suppressed by
this pragma.

The TLD implementation of packed records or records with representation
clauses includes default initialization of filler bits, i.e., bits within the
allocated size of a variant that are not associated with a record component
for the variant. NoDefaultInitialization prevents this default
initialization.

NoDefault Initialization must be placed in the declaration region of the
package, before any declarations that require elaboration code. The pragma
remains in effect until the end of the compilation unit.

Pragma NoElaboration;

Pragma No_Elaboration is used to prevent the generation of elaboration code
for the containing scope. The pragma must be placed in the declaration
region of the affected scope before any declaration that would otherwise

B-4

produce elaboration code.

Praga No Elaboration prevents otherwise unnecessary initialization of
packages that are initialized by other non-Ada operations. Examples are ROM
data and Real Time Kernel initialization. It is used to maintain the TLD Run
Time Library (TLDrtl) and is not intended for general use.

Implementation-Depondent Attributes

None.

Representation Clause Restrictions

Pragma Pack is not supported.

Length clauses are not supported for 'SIZE except when applied to task
types.

Length clauses are not supported for 'StorageSize when applied to access
types.

Length clauses are supported for 'StorageSize when applied to a cask type
and denote the number of words of stack to be allocated to the task.

Length clauses are not spported for 'Small.

Enumeration representation clauses are supported for value ranges of
Integer'First to Integer'Last.

Record representation clauses are supported to arrange record components
within a record. Record components may not be specified to cross a word
boundary unless they are arranged to encompass two or more whole words. A
record component of type record that has itself been "rep specificacioned"
may only be allocated at bit 0. Bits are numbered from left to right with
bit 0 indicating the sign bit.

The alignment clause is not supported.

Address clauses are supported for variable objects and designate the virtual
address of the object. The TLD Ada Compiler System treats the address
specification as a means to access objects allocated by other than Ada means
and accordingly does not treat the clause as a request to allocate the object
at the indicated address.

Address clauses are not supported for constant objects, packages, casks, or
task entries.

B-5

Implementation-Generated Names

The TLD Ada Compiler System defines no implementation dependent names for
compiler generated components.

Address Clause Expressions

Address expression values and type Address represent a location in logical
memory (in the program's current address state). For objects, the address
specifies a location within the 64K word logical operand space. The 'Address
attribute applied to a subprogram represents a 16 bit word address within the
logical instruction space.

Unchecked Conversion Restrictions

None

I/0 Package Characteristics

The following implementation-defined types are declared in TextIo.

subtype Count is integer range 0 .. 511;

subtype Field is Integer range 0 .. 127;

Package Standard

The implementation-defined types of package Standard are:

type Integer is range -32_768 .. 32_767;
type LongInteger is range -2_147 483 648 .. 2_147_483_647;
type Float is digits 6 range -i.l*2.0**127 .. 0.999999*2.0**127;
type LongFloat is digits 9 range -1.0*2.0**127 .. 0.999999999*2.0**127;
type Duration is delta 2.0**(-14) range -86400.0..86400.0;

B-6

Other System Dependencies

LRM Chapter 1.

None.

LRM Chapter 2.

Maximum source line length -- 120 characters.

Source line terminator -- Determined by the Editor used.

Maximum name length -- 120 characters.

External representation of name characters.

Maximum String literal -- 120 characters.

LRM Chapter 3.

LRM defined pragmas are recognized and processed as follows:

Controlled -- Has no effect.

Elaborate -- As described in the LRM.

Inline -- Not presently supported.

Interface -- Supported as a means of importing foreign language
components into the Ada Program Library. May be applied either to a
subprogram declaration as being specially implemented, -- read Interface
as Import --, or to an object that has been declared elsewhere.
Interface languages supported are System for producing a call obeying
the standard calling conventions except that the BEX instruction is used
to cause a software interrupt into the kernel supervisor mode; Assembly
for calling assembly language routines; and Mil-Std-1750A for defining
built in instruction procedures. An optional third parameter is used to
define a name other than the name of the Ada subprogram for interfacing
with the linker.

List -- As defined in the LRM.

Memory Size -- Has no effect.

Optimize -- Has no effect. Optimization controlled by compiler command
option.

Pack -- Has no effect.

Page -- As defined in the LRM.

B-7

Priority -- As defined in the LRM. Priority may range from 0 to 16366.

Default priority is 1.

Shared -- As defined in the LRM. May be applied to scalar objects only.

Storage Unit -- Has no effect.

Suppress -- As defined in the LRM for suppressing checks; all standard
checks may be suppressed individually as well as "Exception Info" and
"All Checks". Suppression of Exception Info eliminates data used to
provide symbolic debug information in the event of an unhandled
exception. The All Checks selection eliminates all checks with a single
pragma. In addition to the pragma, the compiler permits control of
check suppression by command line option without the necessity of source
changes.

System Name -- Has no effect.

Number declarations are not assigned addresses and their names are not
permitted as a prefix to the 'address attribute. (Clarification only).

Objects are allocated by the compiler t occupy one or more 16 bit 1750A
words. Only in the presence record representation clauses are objects
allocated to less than a word.

Except for access objects, uninitialized objects contain an undefined value.
An attempt to reference the value of an uninitialized object is not detected.

The maximum number of enumeration literals of all types is limited only by
available symbol table space.

The predefined integer types are:

Integer range -32_768 .. 32767 and is implemented as a 1750A single
precision fixed point data.
LongInteger range -2_147 483 648 .. 2147483_647 and implemented as
1750A double precision data. -
Short-Integer is not supported.

System.MinInt is -2 147 483 648.
System.MaxInt is 2_147_483647.

The predefined real types are:

Float digits 6.
Long_Float digits 9.
Short-Float is not presently supported.

System.Max Digits is presently 9 and is implemented as 1750A 48-bit
floating point data.

B-8

Fixed point is implemented as 1750A single and double precision data as is
appropriate for the range and delta.

On the 1750A, index constraints as well as other address values such as
access types are limited to an unsigned range of 0 .. 65_536 or a signed
range of -32_768 .. 32767.

The maximum array size is limited to the size of virtual memory -- 64K words.

The maximum String length is the same as for other arrays.

Access objects are implemented as an unsigned 16 bit 1750A integer. The
access literal Null is implementated as one word of zero on the 1750A.

There is no limit on the number of dimensions of an array type. Array types
are passed as parameters opposite unconstrained formal parameters using a 3
word dope vector illustrated below:

Word address of first element I
Low bound value of first dimension I
Upper bound value of first dimension I

--

Additional dimension bounds follow immediately for arrays with more than one

dimension.

LRM Chapter 4.

Machine-Overflows is True for the 1750A.

Pragma Controlled has no effect for the TLD VAX/1750A Compiler since garbage
collection is never performed.

LRM Chapter 5.

The maximum number of statements in an Ada source program is undefined and
limited only by Symbol Table space.

Case statements unless they are quite sparse, are allocated as indexed jump
vectors and are, therefore, quite fast.

Loop statements with a for implementation scheme are implemented most
efficiently on the 1750A if the range is in reverse and down to zero.

Data declared in block statements on the 1750A is elaborated as part of its
containing scope.

B-9

LRM Chapter 6.

Arrays, records and task types are passed on the 1750A by reference.

Pragma Inline is not presently supported for subprograms.

LRM Chapter 7.

Package elaboration is performed dynamically permitting a warm restart
without the necessity to reload the program.

LRM Chapter 8.

LRM Chapter 9.

Task objects are implemented as access types pointing to a Task Information
Block (TIB).

Type Time in package Calendar is declared as a record containing two double

precision integer values: the date in days and the real time clock.

Pragma Priority is supported with a value of 1 to 16366.

Pragma Shared is supported for scalar objects.

LRM Chapter 10.

Multiple Ada Program Libraries are supported with each library containing an
optional ancester library. The predefined packages are contained in the TLD
standard library, ADA.LIB.

LRM Chapter 11.

Exceptions are implemented by the TLD Ada Compiler System to take advantage
of the normal policy in embedded computer system design to reserve 50% of the
duty cycle. By executing a small number of instructions in the prologue of a
procedure or block containing an exception handler, a branch may be taken, at
the occurrence of an exception, directly to a handler rather than performing
the time consuming code of unwinding procedure calls and stack frames. The
philosophy taken is that an exception signals an exceptional condition,
perhaps a serious one involving recovery or reconfiguration, and that quick
response in this situation is more important and worth the small throughput
tradeoff in a real time environment.

B-10

LEM Chapter 12.

A single generic instance is generated for a generic body. Generic
specifications and bodies need not be compiled together nor need a body be
compiled prior to the compilation of an instantiation. Because of the single
expansion, this implementation of generics tend to be more favorable on the
1750A because of the usual space savings achieved. To achieve this tradeoff,
the instantiations must by nature be more general and are, therefore,
somewhat less efficient timewise.

LRM Chapter 13.

Representation clause support and restrictions are defined above.

A comprehensive Machine Code package is provided and supported.

UncheckedDeallocation and Unchecked-Conversion are supported.

The implementation dependent attributes are all supported except
'StorageSize for an access type.

LRM Chapter 14.

File I/O operations are not supported for the 1750A. TextIo and
LowLevelIo are suppnrted.

B-I

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$ACC SIZE 16
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIG ID1 (1..119 -> 'A', 120 => '1')
in identifier the size of the
maximum input line length which
is identical to $BIG ID2 except
for the last characzer.

$BIG ID2 (1..119 => 'A', 120 -> '2')
An identifier the size of the
maximum input line length which
is identical to $BIG ID1 except
for the last character.

$BIG ID3 (1..80 -> 'A', 81 > '3',
X.n identifier the size of the 82..120 -> 'A')
maximum input line length which
is identical to $BIG ID4 except
for a character near-the middle.

C-1

TEST PARAMETERS

Name and Meaning Value

$BIG ID4 (1..80 => 'A', 81 => '4',
In identifier the size of the 82..120 -> 'A')
maximum input line length which
is identical to SBIG ID3 except
for a character near-the middle.

SBIG INT LIT (1..117 => '0', 118..120 => "298")
in integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

$BIG REAL LIT (1..115 -> '0', 116..120 => "690.0")
X uiversal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG STRING1 (1 a> '"', 2..61 W> 'A', 62 => '"')
A string literal which when
catenated with $BIG STRING2
yields the image of SBIGIDI.

SBIG STRING2 (1 => '"', 2..60 -> 'A', 61 w> '1',
1 string literal which when 62 -> '"')
catet..ated to the end of
$BIG STRING1 yields the image of
$BIGID1.

SBLANKS (1..100 => '
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT LAST 511
A universal integer
literal whose value is
TEXT IO. COUNT' LAST.

SDEFAULT HEM SIZE 65536
An iFteger literal whose value
is SYSTEM.MEMORY SIZE.

$DEPAULT STOR UNIT 16
An iiiteger literal whose value
is SfSTEM.STORAGE UNIT.

C-2

TEST PARAMETERS

Name and Meaning Value

$DEFAULT SYS NAME AF1750
The - value of the constant
SYSTEM.SYSTEMNAME.

$DELTA DOC 2.0**-31
A real literal whose value is
SYSTEM.FINEDELTA.

$FIELD LAST 127
A universal integer
literal whose value is
TEXT IO.FIELD' LAST.

$FIXED NAME NO SUCHTYPE
The name of a predefined
fixed-point type other than
DURATION.

$FLOAT NAME NOSUCHTYPE
The name of a predefined
floating-point type other than
FLOAT, SHORT-FLOAT, or
LONG FLOAT.

$GREATERTHAN DURATION 90000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATER THAN DURATION BASE LAST 131073.0
A unTversal real iteral that is
greater than DURATION'BASE'LAST.

$HIGH PRIORITY 16#3FEE#
AR integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGAL EXTERNAL FILE NAME1 "BADCHAR@.!"
An external- fili name which
contains invalid characters.

$ILLEGAL EXTERNAL FILE NAME2 "THISFILENAMEWOULDBEPERFECTLYLEGALIF"
An external- fili name vhich
is too long.

$INTEGER FIRST -32768
A universal integer literal
whose value is INTEGER'FIRST.

C-3

TEST PARAMETERS

Name and Meaning Value

$INTEGER LAST 32767
A universal integer literal
whose value is INTEGER'LAST.

$INTEGER LAST PLUS 1 32768
A Univeisal - integer literal
whose value is INTEGER'LAST + 1.

$LESS THAN DURATION -90000.0
A7 universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS THAN DURATION BASE FIRST -131073.0
A-universal real literal that is
less than DURATION'BASE'FIRST.

$LOV PRIORITY 1
in integer literal whose value
is the lover bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSA DOC 31
An integer literal whose value
is SYSTEM.MAX MANTISSA.

$MAX DIGITS 9
Waximum digits supported for
floating-point types.

$MAX IN LEN 120
NaxTmum input line length
permitted by the implementation.

$MAX INT 2 147 483_647I universal integer literal - --

whose value is SYSTEM.MAX INT.

$MAX INT PLUS 1 2147483648
1 Unive~sal integer literal - - -
whose value is SYSTEM.MAXINT+l.

SMAX LEN INT BASED LITERAL (1..2 .> "2:", 3..117 => '0',
1 Univirsal - integer based 118..120 -> "11:")
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be $MAX INLEN
long.

C-4

TEST PARAMETERS

Name and Meaning Value

$MAX LEN REAL BASED LITERAL (1.3 => "16:", 4..116 => 'C',
A universal real based literal 117..120 => "F.E:")
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be SMAXINLEN long.

$MAX STRING LITERAL (1 => I"', 2..119 => 'A', 120 => '"')
A string literal of size
$MAX IN LEN, including the quote
characters.

$MIN INT -2_147_483 648X universal integer literal - -8-

whose value is SYSTEM.MIN INT.

$MIN TASK SIZE 64
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

$NAME AP1750
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,
LONG-FLOAT, or LONG-INTEGER.

$NAME LIST AF1750
A-list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

$NEG BASED INT 16#FFFFFFFE
1 basid integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

SNEW MEM SIZE 65536
in integer literal whose value
is a permitted argument for
pragma MEMORY SIZE, other than
$DEFAULT MEM SIZE. If there is
no other -value, then use
$DEFAULTMEMSIZE.

C-5

TEST PARAMETERS

Name and Meaning Value

$NEV STOR UNIT 16
in integer literal whose value
is a permitted argument for
pragma STORAGE UNIT, other than
$DEFAULT STOR UNIT. If there is
no other- permitted value, then
use value of SYSTEM.STORAGE UNIT.

$NEV SYS NAME AF1750
A vatue of the type SYSTEM.NAME,
other than $DEFAULT SYS NAME. If
there is only one value-of that
type, then use that value.

$TASK SIZE 1024
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

$TICK 1.0/10000.0
A real literal whose value is
SYSTEM. TICK.

C-6

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

a. E28005C: This test expects that the string "-- TOP OF PAGE. --63" of
line 204 will appear at the top of the listing page due to a pragma
PAGE in line 203; but line 203 contains text that follows the pragma,
and it is this text that must appear at the top of the page.

b. A39005G: This test unreasonably expects a component clause to pack an
array component into a minimum size (line 30).

c. B97102E: This test contains an unintended illegality: a select
statement contains a null statement at the place of a selective wait
alternative (line 31).

d. C97116A: This test contains race conditions, and it assumes that
guards are evaluated indivisibly. A conforming implementation may use
interleaved execution in such a way that the evaluation of the guards
at lines 50 & 54 and the execution of task CHANGING OF THE GUARD
results in a call to REPORT.FAILED at one of lines 52 or 56.- -

e. BC3009B: This test wrongly expects that circular instantiations will
be detected in several compilation units even though none of the units
is illegal with respect to the units it depends on; by AI-00256, the
illegality need not be detected until execution is attempted (line
95).

f. CD2A62D: This test wrongly requires that an array object's size be no
greater than 10 although its subtype's size was specifLed to be 40
(line 137).

D-1

WITHDRAWN TESTS

g. CD2A63A..D, CD2A66A..D, CD2A73A..D, and CD2A76A..D (16 tests): These
tests wrongly attempt to check the size of objects of a derived type
(for which a 'SIZE length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)). Additionally, they use the 'SIZE length
clause and attribute, whose interpretation is considered problematic
by the WG9 ARG.

h. CD2A81G, CD2A83G, CD2A84M..N, and CD50110 (5 tests): These tests
assume that dependent tasks will terminate while the main program
executes a loop that simply tests for task termination; this is not
the case, and the main program may loop indefinitely (lines 74, 85,
86, 96, and 58, respectively).

i. CD2B15C and CD7205C: These tests expect that a 'STORAGE SIZE length
clause provides precise control over the number of designated objects
in a collection; the Ada standard 13.2:15 allows that such control
must not be expected.

J. CD2D1lB: This test gives a SMALL representation clause for a derived
fixed-point type (at line 30) that defines a set of model numbers that
are not necessarily represented in the parent type; by Commentary
AI-00099, all model numbers of a derived fixed-point type must be
representable values of the parent type.

k. CD5007B: This test wrongly expects an implicitly declared subprogram
to be at the address that is specified for an unrelated subprogram
(line 303).

1. ED7004B, ED7005C..D, and ED7006C..D (5 tests): These tests check
various aspects of the use of the three SYSTEM pragmas; the AVO
withdraws these tests as being inappropriate for validation.

m. CD7105A: This test requires that successive calls to CALENDAR.CLOCK
change by at least SYSTEM.TIK; however, by Commentary AI-00201, it is
only the expected frequency of change that must be at least
SYSTEM.TICK--particular instances of change may be less (line 29).

n. CD7203B and CD7204B: These tests use the 'SIZE length clause and
attribute, whose interpretation is considered problematic by the WG9
ARG.

o. CD7205D: This test checks an invalid test objective: it treats the
specification of storage to be reserved for a task's activation as
though it were like the specification of storage for a collection.

D-2

WITHDRAWN TESTS

p. CE2107I: This test requires that objects of two similar scalar types
be distinguished when read from a file--DATA ERROR is expected to be
raised by an attempt to read one object- as of the other type.
However, it is not clear exactly how the Ada standard 14.2.4:4 is to
be interpreted; thus, this test objective is not considered valid
(line 90).

q. CE3111C: This test requires certain behavior, when two files are
associated with the same external file, that is not required by the
Ada standard.

r. CE3301A: This test contains several calls to END OF LINE and
END OF PAGE that have no parameter: these calls were intended to
specify a file, not to refer to STANDARD INPUT (lines 103, 107, 118,
132, and 136).

s. CE3411B: This test requires that a text file's column number be set to
COUNT' LAST in order to check that LAYOUT ERROR is raised by a
subsequent PUT operation. But the former operation will generally
raise an exception due to a lack of available disk space, and the test
would thus encumber validation testing.

D-3

APPENDIX E

COMPILER OPTIONS AS SUPPLIED BY TLD SYSTEMS, LTD.

Compiler: TLD VAX/MIL-STD-1750A Ada Compiler System, Version 1.4.0

ACVC Version: 1.10

E-1

TLD Ada Compiler System
ADA COMPILER REFERENCE DOCM3ENT

In all of the above examples, the input file test.ada is compiled
generating a relocatable object file named test.obj, a listing file
named test.lst containing a summary of the option switches, a source
image and generated assembly listing end a cross reference listing. The
Ada source code is interspersed with the generatad assembly code in the
listing file. No constraint checking code is generated. All address
computations. are performed in 1750A single precision fixed point
arithmetic. A system cross reference file, test.srf is also generated. 7

3.2 Compiler Recognized Names

3.3 Compiler Option Switches

Compiler option switches provide control over various processing and
output features of the compiler. These features include several
varieties of listing output, the level and kinds of optimizations
desired, the choice of target computer, and the operation of the
compiler in a syntax checking mode only.

Keyvords are used for selecting various compiler options. Tha
complement keyword, if it exists, is used to disable a compiler option
and is formed by prefixing the switch keyword with Onou*.

Switches may be abbreviated to the number of charac:rs required to
uniquely idencfy the switch. For example, the switch "elaboracoro
(explained in the list, below) may be uniquely identified by th4
abbreviazion 'el.' Of course, the entira nae may be used. If an
option is not specified by the user, a default setting is ass.=vd. All
specified compiler options apply to a single invocation of the compiler.

Thu defaul: soating of a switch and its meaning ars daftned In the tatle
below. The meaning of the complement for2 can be derived by
complementing the meaning of the switch. For some switches, the
complement meaning is not obvious; these complement switch keywords are
listed separataly.

In the dec:ipticn of the switches, the target dependent name <targec>
is used. The value of this symbol is determined by the value of the
target switch.

Compiler generated file specifications generally conform to host
conventions. For example:

The senera:ed file name is the source filename appended with the dafaul:
file suffix. If the user specifies an output file name, no default
suffix is provided.

E-2

TLD Ad& Compiler System
ADA COMPILER REFERICE DOCUMENT

Switch Name Meaning
. S. S . o

l6bador
32bador -- default

The 32BADDR option causes address computations to be performed
using 1750A double precision fixed point data words. If
16BADDR is selected, address computations will be performed
using single precision fixed point data words ignoring the
possibility of a 1750A Fixad Point Overflow Incerrupt due to
computation of an address greater than 7fF hex. Applicable
to 1750A target only.

checks -- default
checks(-check idenctifier)
checks(-checkidentifierf,...))
no-checks
no checks {-check identifier)
no-checks(-eheckidentifier(....) }

The checks

switch without check identifiers enables all ran time chacks.
If one or more check identifiers are specified, the specified
run time checks are enabled; the status of run time check.
associaced with unmentioned check identifiers is unchanged.

The no checks switch omits all run time checks. 1f one or
morm check dentifiars are specified, the specified :--a
checks are omicted; the stacus of run time checks asscc4ac~d
with unmentioned check-identiLfers is unchanged. WLrh one
exception, nochecks pragma Supprass(allchecks) in the scurca
coda. The exception is associatad with the TLU dafined
check-identtfier exception-info.

Check identifiers ar& listad below and ara describad Ln the
LRH, Section 11.7 except excspcioninfo,

access check discrimLnant- check division check
elaboration check exception info index-check
length check overflow check rangecheck
storagecheck

E-3

TLD Ads Compiler System
ADA COMPILER REFERENCE DOCUMENT

The TtD defined check identifier exception-info is explained
below.

TLada generates a string in the relocatable object code that
is the full path name of the fLle being compiled. TLDada also
generates extra instructions in the relocatable code that aeS
used by the Run Time System to inform the programmer where an
unhandled exception is raised. The no checks-exception info
switch will suppress both the string and extra instructions,
whereas the pra"a vill only suppress the extra instructions.

codegen-- default
no-codegen

The no codegen switch causes the compiler to check syntax and
updataethe Ada Program Library, but no code is generated.

cpl-n
cpl-ll0 -- default

The cpl switch specifies the number of characters per line in
the listing file. The cpl value can range from 80 to 132.

crossref
no-crossref -- default

The crossref switch generates a cross-reference listing which
includes referenced names only. The cross-reference listing
is included in the listing file: therefore the list svit-h
must be selec:ed or crossref has no effect.

cseg -- default
no cseag

Te caeg switch requestz that constants be allocated in a
control section of their own (1750A target only).

debug .- default
no debug

The debug switch selects the production of symbo Lc debug
tables in the relocatable object file that permiLt access to
Ada source program names, attributes, and source line numbers
at run time
Alternate aobreviation: dbg. nodbg

E-4

TLD Ads Compiler System
ADA COMPILE REFERENCE DOCUM

delassign -- default
no-delassign

The delassign switch optimizes code by deleting redundant
assignments. Note: Use of this svitch can cause erroneous
source programs to execute with unexpected results if
references to access objects .are made without regard to the
interference semantics of Ada.

elaborator

The elaborator switch informs ThDada that the specified
source- le-spec is the name of the Ad^ Program Library unit
that is to be used as the main subprogram.

errlevel-n ?
errlevel-3 -- default ?

7

The errlev*l switch assigns a minimum error level value which
will terminate compilation at the completion of the compiler ?
phase encouncering an error equal to or greater than the I
indicated level. The value can range from 0 to 3. I

sopt -- default
gopt(optsvitch)
&Opt(opt3Witch(,... ?
no_gopt -- temporarily disabled

The gopt svitch cannot be disabled in the currently released 7
Ads Compiler. i The gopt switch enables global optimizacon 7
and selact: vhich optimizations are to be performed by the ?
Slobal optizier. Section 3.8 of the Ada Compiler Referere ?
Manual provides further infor:ation on opti=izacon. 7
Selection of the govt switch enables the follovng default 7
optsvitch options as indicated" miless overridden by an
explci: optsvitcch selection.

Outsttc.4h Neme Meanng

cse -- default 7
nocse ?

Common subexpression elimination.

fold -- default 7
no-fold 7

Folding of constants, scalars, and expressions. ?
7

*de1 -- default ?
no-adel

E-5

TLD Ada Compiler System
ADA COMPILER REFERENCE DOCUMENT

Dead assignment deletion. ?
7

hoist -- default ?
no-hoist?

Code hoisting. 7

icm -- default ?
noem ?

Invariant code motion out of loops. ?
7

stred -- default ?
no-strad 7

Strength reduction. 7
7

trep -- default ?

no crop ?
Test replacement. ?

7

rgal -- default ?

no.rgal ?

Register allocation. ?
?

extc ?

noextc -- default ?
External calls may exit with abort. ?7

safe -- default ?
no saf 7

Code hoisting and invariant code motion are ?

performed only If no new compucations are executed. 7

indent-n r

inden:-3 -- default 7

no indent 7

The inden: switch produces a formatted (indentsd) source 7
listing. This switch assigns a value to the number of columns 7

used in Indentation; the v&lue n can ranSe from 0 to 15. ?

info -- default
no-Info

The info svitch outputs all diagnostic messages regardless of

level. The noinfo switch. suppresses the output of
inforu ation- level diagnostic messages.

E-6

TLD Ada Compiler System

ADA COMPILER REFERENCE DOCUMENT

intsl ?
no-intsl -- default

The incal switch intersperses lines of source code with the 7
assembly code it generates in the macro Listing. This switch ?
is valid only if th* list, source and macro switches are 7
selected.

library Ada-progra- library- file - spec
librar; <target>.lib -- default

The library switch specifies the file to be used for Ada
Program Library, The default value of <target> in the Ada
Program Library file spec is derived from the target switch.

list(-listing-file-spec)
no-list -- default

The LIST switch generates a listing file. The default file
suffix is lis. The listing-file-spec can be optionally
specified. The listing will be directed to the user's
terminal if the listing-file-spec is /tty.

listcopy 7
nolistcopy -- default 7

The li=scOpy :witch lisat the source lines of files included 7
via !copy directives. ?
Altornat3s abbreviations: le, no le 7

log
no_log -- default

The log svitch causes the Compiler to vrite to s:dout che
source file spec of the file being coapiled.

lpp-n
lpp-O -- de4fault

The lpp switch assigns a value to the number of lines per ;age
for listing. The value can range from 10 to 99.
ADE Related Switch: /lpp

E-7

TLD Ad Compiler System
ADA COKPILER REFERENCE DOCUMENT

macro
no-macro -- default

The macro switch produces an assembly like object code listing

appended to the source listing file. The list switch must be

enabled or this witch has no effect.
ADE Related Switch: /ASSEMBLY

aint
nosmaint -- defaulc

The saint switch is used only for compiler maintenance and

debugging.
makelib (-parent -APL- spec)
no-makelib-defaultRTSspec -- default

The makallb switch creates a now Ada Program Library (APL)
file. This switch should be used with caution because it

creates a now APL file in the default directory even if
another APL file of the same name existed.

The new AFL file is created in the current working directory
virh the name <targat>. lb unless the library switch is used.

If akelib is used without a parent, a now library is created
with the default RTS specification. This specification is
derived from the name tld lib_<target>. See the target

dependent compiler sections for further explanations of this
name.

mAxerrors-n
maxerrors-500 -- default

The maxerrors switch assigns a value limit to the number of
errors forcing Job termination. Once this value is exceeded,
the compilation is terminated. Information-level diagnostic
messages are not included in the count of errors forcing
termination. The specified value's range is from 0 co 500.

E-
E-8

TLD Ad& Compiler System
ADA COMPILER REFERENCE DOCUMENT (

mode 1-modal

model-standard -- default
1750A target

TLDada produces code for any implementation that conforms to
MIL-STD-1750A. The modal switch informs TLDada that a special
odel of the HIL-STD-1750A is the target computer. MODEL also

is used to inform the compiler of 1750A implementations with
special built-In-Functions (BIFs). Models and the special
features that characterize them are listed below.

mdc281

This switch allows the compiler to make use of the
standard .da281 BIF that produces a 64obit integer 7
multiply result. In addition, the mdc28l chip set
has a known bug associated with FNEC and FABS in a
boundary condition. Use of this switch results in
Senerated code that avoids the problem, although the
generated coda is less efficient.

standard

All other implementations of MIL-STD-1750A are
supported by the default value of the model switch.

object object-file-spec)
object -- default
noobj ect

The object switch produces a relocatable object file. The
default file suffix is ".obj'.

opt -- default
noopt

The opt switch enables regional optimization on the compiled
code.

para
nopara -- default

The per. switch causes all option switches governing the
compilation, including the defaulted option switches, to be
included in the listing file. The list option ms=t also be
selected or par. will have no effect. User specified switches
are preceded in the listing file by a leading asterisk (*),

E-9

ThD Ad& Compiler System
ADA COMPILER REFLLEPNCE DOCUMENT

pcross 7
no_pcross -- default ?

7
The peross switch selects t procedure call cross reference ?
listing. 7

phase -- default
nophase

The no phase switch suppresses displaying phase times during
compilation.

reformat(reformat-file-spec)
no-reformat -- default

The reformat switch causes TLDada to reformat the source
listing in the listing file and, if a reformat-file.spec is
present, to generate a reformatted source file. The default
suffix of the new source file is .rfm.*

skip ((letter...)) ?
no-skip -- default 7

The skip switch permits the selective skipping of source code T
enclosed within !begin-!end directives. This option functions 7
as if a !skip directive for each of the corresponding ?
letter(s) had occurred at the beginning of the source program
and if no letter is specified, exactly as if a !skip directive 7
without any letter had occurred as the start of the source 7
program, i.e., all lbegin-lend enclosed source will be ?
skipped. This ope'cn permits conditional compilation without ?
changing the source file.

source -- default 7
no-source

7

The source switch causes the input source prograz to be
included in the listIng file. Diagnostic messages, unless 7
otherwise suppressed. are always included in the listing file.

sti (-sti-file-spec)
no-so .- default ?

7
The scl switch Seneraces a software tools interface file. The
sti-file-spec can be completely or partially specified. If 7
only the sti file name is specified, the default sti file ?
type, ".ct', is used to form the sti-file-spec. If only the 7
file type is specified, the file name of the input-file-spec ?
is used to fbr2 the si-file-spec. If no si-file-spec is ?
specified, the sti file name is formed from the file name of
the input-file-spec and the default sci file type, ".sti*. ?

E-10

TLD Ada Compiler System
ADA COMPILER REFERENCE DOCUMF-T

syntax only
nosyncax only -- default

The syncx only switch performs syntax checking on the source
program; no object file is produced and the macro switch is
ignored. The Ada Program Library is not updated.

sysref{ srf-file*Opec) ?

no sysref -- defaUlt ?

The sysref switch generates on external name cross-reference ?

file. This file consists of all external names referenced in ?
the source program with the modules which refer to that ?
external name. The default file suffix is SRF. I

table_picture 7

notablejpicture *- default ?

This switch selects a listing containing a graphical ?

representation of the layout of table-items within table 7

entries declared in the program. 7

Alternate abreviation: tpic. 7

target 1750A -- default 7
target HAWK 7

target 68020 ?

target HP300 ?

targe t-eiv

The target switch selects the target computer for which code

is to be Senerated for this compilation. "1750A* selec: the

MIL-STD*1750A Instruction Set Architecture, Notice A. "Wrt'
selects the Rolm HAWK arch'. cccure running under either AOSIS
or ARTS/32. *6&020" selects the Motorola 6a020 architacture.
"MV" selects the Eclipse MV architect-are operating under

AOS/VS. 'HP300w selects the HP 9000 Series 300 Series
architecture operating under HFUX. The 1750A is the only
target currently released.

E-11

